Части плоскости это как понять

Плоскость

ploskost ploskost

Всего получено оценок: 107.

Всего получено оценок: 107.

Плоскость – это основная единица планиметрии. Для правильного восприятия сложных фигур, таких как, пирамида, конус или призма, необходимо понимать и, главное, представлять себе, что такое плоскость.

Определение плоскости

Плоскость представляет поверхность, содержащую прямые, соединяющие две любые ее точки. Это определение звучит достаточно запутанно, поэтому лучше его запомнить. А для понимания стоит запомнить, что плоскость это прямая поверхность. Любая грань пирамиды это плоскость, так же как стена, поверхность стола или лист бумаги.

Стена является частью плоскости, так как любой другой пример плоскости из реальной жизни это ограниченное пространство, а плоскость безгранична, так же как и линия.

Из плоскостей в планиметрии составляются фигуры, как в стереометрии из линий. Яркий пример: четырехугольная пирамида, которая состоит из пяти граней, каждая из которых является частью отдельной плоскости.

Геометрия состоит из двух разделов: планиметрия и стереометрия. Фигуры на плоскости, состоящие из линий и точек это раздел стереометрии. Планиметрия изучает фигуры из плоскостей, прямых и точек. Проще говоря, планиметрия – это геометрия объемных фигур.

Способы задания плоскостей

Плоскость может быть задана тремя точками, нележащими на одной прямой. Из этого утверждения следуют еще два варианта задания плоскостей. При этом специального знака плоскостей не существует.

Плоскость можно задать двумя пересекающимися прямыми, тогда одной точкой будет служить точка пересечения прямых, а двумя другими произвольные точки на одной и второй прямой.

Еще один вид это задание прямой и точкой, нележащей на этой прямой. По аналогии со вторым вариантам: одна точка уже есть и не лежит на прямой, а две других это произвольные точки имеющейся линии.

matematika 58934 sposoby zadaniya ploskosteyРис. 1. Способы задания плоскостей.

Взаимное расположение прямой и плоскости

Прямая в пространстве может быть параллельной плоскости, лежать в плоскости и пересекать ее. Рассмотрим каждый вариант более подробно.

Прямая параллельная плоскости, если она не имеет общих точек с ней. Признак параллельности прямой и плоскости крайне прост: прямая параллельна плоскости, если параллельна любой прямой лежащей в этой плоскости.

Прямая в пространстве может пересекать плоскость, если имеет с ней одну общую точку. Обратите внимание, что тогда прямая и плоскость образуют угол. Чтобы его увидеть, необходимо провести прямую в плоскости через точку пересечения. Тогда угол между этими прямыми и будет углом между прямой и плоскостью. Кроме того, прямая может быть перпендикулярна плоскости. Признак перпендикулярности прямой и плоскости звучит так: прямая перпендикулярна плоскости, если она перпендикулярна каждой из двух пересекающихся прямых в этой плоскости и пересекает плоскость в месте пересечения этих прямых.

Прямая в пространстве может лежать в плоскости, если две любые точки этой прямой принадлежат этой плоскости.

matematika 58934 vzaimnoe raspolozhenie pryamoy i ploskostiРис. 2. Взаимное расположение прямой и плоскости.

Взаимное расположение плоскостей

Плоскости в пространстве могут совпадать, пересекаться или быть параллельными.

Плоскости параллельны, если попарно параллельны две пересекающиеся прямые в каждой из плоскостей.

Пересекаться плоскости могут только по прямой. В этом случае плоскости образуют угол. Чтобы найти его численные значения нужно в каждой из плоскостей провести прямую перпендикулярную прямой пересечения плоскостей. Эти две прямые и образуют угол плоскостей. Эти свойства иногда называют правилами плоскостей.

matematika 58934 raspolozhenie ploskosteyРис. 3. Расположение плоскостей.

lazyimg

Что мы узнали?

Мы дали определение и привели примеры плоскости. Выделили варианты пересечения прямой и плоскости и пересечения плоскостей. Привели несколько признаков, относящихся с плоскостям и разобрали все случаи существования плоскостей в пространстве.

Источник

Плоскость в пространстве – необходимые сведения

Плоскость – это одна из наиболее важных фигур в планиметрии, поэтому нужно хорошо понимать, что она из себя представляет. В рамках этого материала мы сформулируем само понятие плоскости, покажем, как ее обозначают на письме, и введем необходимые обозначения. Затем мы рассмотрим это понятие в сравнении с точкой, прямой или другой плоскостью и разберем варианты их взаимного расположения. Все определения будут проиллюстрированы графически, а нужные аксиомы сформулированы отдельно. В последнем пункте мы укажем, как правильно задать плоскость в пространстве несколькими способами.

Понятие плоскости и ее обозначения

Плоскость представляет собой одну из простейших фигур в геометрии наравне с прямой и точкой. Ранее мы уже объясняли, что точка и прямая размещаются на плоскости. Если эту плоскость разместить в трехмерном пространстве, то мы получим точки и прямые в пространстве.

В жизни представление о том, что такое плоскость, нам могут дать такие объекты, как поверхность пола, стола или стены. Но нужно учитывать, что в жизни их размеры ограничены, а здесь понятие плоскости связано с бесконечностью.

Если нам нужно графическое отображение плоскости, то обычно для этого используется замкнутое пространство произвольной формы или параллелограмм.

image004

Плоскость принято рассматривать вместе с прямыми, точками, другими плоскостями. Задачи с этим понятием обычно содержат некоторые варианты их расположения друг относительно друга. Рассмотрим отдельные случаи.

Как могут располагаться плоскость и точка друг относительно друга

Первый способ взаимного расположения заключается в том, что точка расположена на плоскости, т.е. принадлежит ей. Можно сформулировать аксиому:

В любой плоскости есть точки.

Если некая плоскость задана в пространстве, то число точек, принадлежащих ей, является бесконечным. А какого минимального количества точек будет достаточно для определения плоскости? Ответом на этот вопрос будет следующая аксиома.

Через три точки, которые не расположены на одной прямой, проходит единственная плоскость.

Другой способ взаимного расположения точки и плоскости можно выразить с помощью третьей аксиомы:

Можно выделить как минимум 4 точки, которые не будут находиться в одной плоскости.

Графически последнюю аксиому можно представить так:

image009

Варианты взаимного расположения прямой и плоскости

Самый простой вариант – прямая находится в плоскости. Тогда в ней будут расположены как минимум две точки этой прямой. Сформулируем аксиому:

Если хотя бы две точки заданной прямой находятся в некоторой плоскости, это значит, что все точки этой прямой расположены в данной плоскости.

image011

Графически этот вариант расположения выглядит так:

image014

image016

Если мы решаем задачу, в которой есть плоскость, нам необходимо знать, что из себя представляет нормальный вектор плоскости.

Нормальный вектор плоскости – это такой вектор, который лежит на перпендикулярной прямой по отношению к плоскости и не равен при этом нулю.

Примеры нормальных векторов плоскости показаны на рисунке:

image017

image020

Если прямая расположена внутри плоскости, то она делит ее на две равные или неравные части (полуплоскости). Тогда такая прямая будет называться границей полуплоскостей.

Любые 2 точки, расположенные в одной полуплоскости, лежат по одной сторону от границы, а две точки, принадлежащие разным полуплоскостям, лежат по разную сторону от границы.

Варианты расположения двух плоскостей друг относительно друга

1. Наиболее простой вариант – две плоскости совпадают друг с другом. Тогда они будут иметь минимум три общие точки.

2. Одна плоскость может пересекать другую. При этом образуется прямая. Выведем аксиому:

Если две плоскости пересекаются, то между ними образуется общая прямая, на которой лежат все возможные точки пересечения.

На графике это будет выглядеть так:

image021

В таком случае между плоскостями образуется угол. Если он будет равен 90 градусам, то плоскости будут перпендикулярны друг другу.

3. Две плоскости могут быть параллельными друг другу, то есть не иметь ни одной точки пересечения.

image022

Если у нас есть не две, а три и больше пересекающихся плоскостей, то такую комбинацию принято называть пучком или связкой плоскостей. Подробнее об этом мы напишем в отдельном материале.

Как задать плоскость в пространстве

В этом пункте мы посмотрим, какие существуют способы задания плоскости в пространстве.

1. Первый способ основан на одной из аксиом: единственная плоскость проходит через 3 точки, не лежащие на одной прямой. Следовательно, мы можем задать плоскость, просто указав три таких точки.

Если у нас есть прямоугольная система координат в трехмерном пространстве, в которой задана плоскость с помощью этого способа, то мы можем составить уравнение этой плоскости (подробнее см, соответствующую статью). Изобразим данный способ на рисунке:

image023

2. Второй способ – задание плоскости с помощью прямой и точки, не лежащей на этой прямой. Это следует из аксиомы о плоскости, проходящей через 3 точки. См. рисунок:

image024

3. Третий способ заключается в задании плоскости, которая проходит через две пересекающиеся прямые (как мы помним, в таком случае тоже есть только одна плоскость.) Проиллюстрируем способ так:

image025

4. Четвертый способ основан на параллельных прямых. Вспомним, какие прямые называются параллельными: они должны лежать в одной плоскости и не иметь ни одной точки пересечения. Получается, что если мы укажем в пространстве две такие прямые, то мы тем самым сможем определить для них ту самую единственную плоскость. Если у нас есть прямоугольная система координат в пространстве, в которой уже задана плоскость этим способом, то мы можем вывести уравнение такой плоскости.

На рисунке этот способ будет выглядеть так:

image026

Если мы вспомним, что такое признак параллельности, то сможем вывести еще один способ задания плоскости:

Если у нас есть две пересекающиеся прямые, которые лежат в некоторой плоскости, которые параллельны двум прямым в другой плоскости, то и сами эти плоскости будут параллельны.

Таким образом, если мы зададим точку, то мы сможем задать плоскость, которая проходит через нее, и ту плоскость, которой она будет параллельна. В таком случае мы тоже можем вывести уравнение плоскости (об этом у нас есть отдельный материал).

image027

Вспомним одну теорему, изученную в рамках курса по геометрии:

Через определенную точку пространства может проходить только одна плоскость, которая будет параллельна заданной прямой.

Это значит, что можно задать плоскость путем указания конкретной точки, через которую она будет проходить, и прямой, которая будет перпендикулярна по отношению к ней. Если плоскость задана этим способом в прямоугольной системе координат, то мы можем составить уравнение плоскости для нее.

image028

Также мы можем указать не прямую, а нормальный вектор плоскости. Тогда можно будет сформулировать общее уравнение.

image029

Мы рассмотрели основные способы, с помощью которых можно задать плоскость в пространстве.

Источник

Плоскость

Понятие плоскости

24392

24453

поверхность школьной доски:

24454

Эти поверхности ограничены, у них есть края. Но представление о плоскости мы имеем с их помощью.

Только плоскость простирается безгранично (в любом направлении, заданном на этой плоскости).

Понятие плоскость принадлежит к числу основных понятий геометрии.

Обозначение плоскости

Конечно, нарисовать плоскость, у которой нет краев, невозможно. Поэтому, при изображении плоскости, рисуют только ее часть:

24455

Обозначается плоскость строчными буквами греческого алфавита – α (альфа), β (бета), γ (гамма) и т.д.:

24462

Буквы пишут либо рядом с плоскостью, либо на плоскости.

Определение плоскости

Плоскость — поверхность, содержащая полностью каждую прямую, соединяющую любые её точки. ( то есть, любая прямая, соединяющая две ее точки, целиком принадлежит ей).

24466

Поделись с друзьями в социальных сетях:

Источник

Общее уравнение плоскости : описание, примеры, решение задач

В статье рассмотрим такой тип уравнений плоскости как общее уравнение, получим его вид и разберем на практических примерах. Рассмотрим частные случаи и понятие общего неполного уравнения плоскости.

Общее уравнение плоскости: основные сведения

Также вспомним определение прямой, перпендикулярной к плоскости: прямая является перпендикулярной к заданной плоскости, если она перпендикулярна любой прямой, принадлежащей этой плоскости.

Теорема состоит из двух частей. Разберем доказательство каждой из них.

image015

Уравнение вида A x + B y + C z + D = 0 называют общим уравнением плоскости в прямоугольной системе координат O x y z трехмерного пространства.

Раскроем чуть шире смысл теорем.

Укажем пример как иллюстрацию этих утверждений.

image021

Общее уравнение плоскости, проходящей через точку

Решение

Подставим координаты точки М 0 в исходной уравнение плоскости:

Ответ: точка М 0 принадлежит заданной плоскости; точка N 0 – не принадлежит.

Решение

Разберем обратную задачу, когда требуется составить уравнение плоскости по заданным координатам нормального вектора.

Возможно получить это уравнение другим способом.

Решение

Рассмотрим два способа решения.

Чтобы получить искомое общее уравнение плоскости, необходимо также воспользоваться необходимым и достаточным условием перпендикулярности векторов и тогда:

Неполное общее уравнение плоскости

Разберем все возможные варианты общих неполных уравнений в прямоугольной системе координат трехмерного пространства.

A · 0 + B · 0 + C · 0 = 0 ⇔ 0 ≡ 0

image046

image047

image053

Р​​ешение

Задачу возможно решить еще одним способом.

Решение

Источник

Урок 4 Бесплатно Плоскость. Прямая. Луч

В этом уроке мы продолжим разговор про геометрию, начатый в прошлых уроках.

Мы рассмотрим такие понятия, как плоскость, прямая, луч, поговорим еще раз про отрезки. Также обсудим, как все эти объекты могут располагаться друг относительно друга. Начнем же.

shutterstock 458900299

Плоскость

Важно отметить, что в начале разбора приходится некоторые понятия принимать как нечто, что не требует определения, к таким понятиям относятся понятия прямой и точки.

Немецкий учений Гильберт как-то сказал на эту тему, что “точкой можно назвать хоть стул”, тем самым говоря, что вся наша модель строится на некоторых условностях.

С этим пониманием приступим к первой теме урока.

Для начала нам нужно понять, что такое поверхность.

Есть много строгих математических формулировок, но они уместны скорее в высших учебных заведениях, пока будет достаточно обиходного понятия поверхности.

Будем понимать под поверхностью непрерывное множество точек, границу, отделяющую геометрическое тело от внешнего пространства.

Представьте себе поверхность рабочего стола, футбольного мяча или любого другого предмета.

Также известно, что некоторые поверхности, например, рабочего стола, плоские.

Плоская в данном случае обозначает, что если через любые две точки, принадлежащие этой плоскости, провести прямую, то она будет лежать в этой плоскости.

В самом деле, если нарисовать две точки на поверхности стола и соединить их прямой, то эта прямая будет лежать в плоскости стола.

Если же отметить две точки на шаре, то (тут нужен некоторый мысленный эксперимент) прямая, соединяющая их, будет проходить внутри шара, а не по его поверхности. Таким образом, поверхность шара не плоская, не является плоскостью.

Обычно на рисунках плоскость обозначается конечной, в крайнем случае лист бумаги или экран компьютера конечен.

Но это лишь обозначения, сама плоскость бесконечна.

Поверхности и плоскости принято обозначать двумя способами: с помощью трех латинских букв, соответствующих трем точкам плоскости, или одной греческой.

1

Выше изображена четырехугольная пирамида. В ней можно насчитать 5 плоскостей:

Согласись, две точки слишком мало, чтобы обозначить плоскость: на данном рисунке, например, есть две плоскости, проходящие через точки A и E, а четыре точки уже несут избыточную информацию, поэтому плоскости обозначают тремя точками.

Иногда плоскость обозначают одной строчной греческой буквой, например, так:

2

Точка может принадлежать плоскости (лежать в ней) или не принадлежать плоскости.

Пройти тест и получить оценку можно после входа или регистрации

Прямая

Проведем отрезок, назовем его AB.

3

А теперь продолжим его по линейке за концы в обе стороны:

4

Так мы получим прямую. Прямая, как и плоскость, бесконечна.

Если плоскость простирается во все стороны, то прямая в конкретные два направления.

Как и в случае с плоскостью, невозможно изобразить нечто бесконечное в тетрадях или на мониторах, так как эти объекты имеют границы, поэтому любое изображение будет лишь обозначать прямую.

Для обозначения прямой используются две заглавные латинские буквы, так выше приведенную прямую можно назвать “прямая АВ” или “прямая ВА”.

Также иногда прямые обозначают строчными латинскими буквами:

5

Вот, например, прямая а.

Через любые две точки проходит единственная прямая.

То есть ситуация, при которой между двумя точками нет ни одной прямой или, напротив, более одной, невозможна.

Так на рисунке выше точки А и В принадлежат прямой АВ.

Рассмотрим другой рисунок:

12

В данном случае точки С и D не принадлежат прямой АВ.

Мы можем представить себе прямую, нарисованную на плоском листе бумаги.

Так и в математике прямые могут принадлежать плоскостям.

Можно изобразить это так:

6

На рисунке прямая а, принадлежит плоскости \(\mathbf<\alpha>\)

Обычно такие рисунки сопровождают текстовым описанием для того, чтобы их понимали однозначно.

Также мы можем видеть прямые и на других рисунках.

1

Мы знаем, что через любые две точки проходит прямая.

Так что смотря на рисунок выше мы можем говорить про прямые AE, ED, DC, AC, AB, EB, DB, CB

Точно также можно видеть прямые не только на объемных рисунках, но и на плоских.

7

Так на этом рисунке можно говорить про прямые AB, BC и AC

Также отношение “принадлежит” обладает в данном случае таким свойством: если точка принадлежит прямой, а прямая принадлежит плоскости, то верно, что эта точка принадлежит плоскости.

Посмотрим на рисунок:

8

Если нам известно, что точка А принадлежит прямой а и прямая а принадлежит плоскости \(\mathbf<\alpha>\), то очевидно, что и сама точка А принадлежит прямой \(\mathbf<\alpha>\)

Про прямые надо знать такое определение:

Если две прямые имеют общую точку, то говорят, что они пересекаются в этой точке.

9

В данном случае это точка О.

Пройти тест и получить оценку можно после входа или регистрации

Любая точка на прямой делит ее на две части.

Каждую из этих частей называют лучом.

Сама такая точка будет называться началом луча.

10

Точка М является началом обоих лучей.

Лучи МА и МВ называются дополнительными друг другу. Это такие лучи, на которые точка разбивает прямую.

Давая лучам название, первой буквой пишут вершину луча, вторая определяет направление.

Это может быть как точка на соответствующей прямой, так и просто буква, подписанная возле соответствующей части прямой, как на рисунке выше.

Как и в случае с прямой, точки могут лежать и не лежать на луче.

211

Посмотрим, как лежат точки относительно луча MB.

Точки Р и К не лежат на прямой АВ, значит и на луче, как на части прямой, лежат не могут.

Точка С не лежит на луче МВ, так как находится с другой стороны от точки М, луч уходит в сторону В.

Научимся видеть лучи еще в некоторых ситуациях.

Например, сколько лучей образуются при пересечении прямых?

13

Обозначим прямые как АВ и CD, точку пересечения назовем точкой О.

Имеем одну точку, которая может стать началом луча, от нее отходят четыре половины прямых.

А полупрямая это и есть луч. Значит, при пересечении двух прямых от точки их пересечения будет отходить 4 луча.

Посмотрим еще раз на картинку с треугольником АВС.

7

В случае с лучом принципиально, где у него начало, а где продолжение (конца не бывает).

Тогда у нас есть 3 точки-кандидата на начало луча. От каждой точки отходит по два отрезка, но чтобы обозначить луч нам нужна любая точка с продолжения, так что получается, что от каждой вершины отходят по 2 луча и всего на рисунке можно увидеть 6 лучей, если не ставить дополнительных точек.

Пройти тест и получить оценку можно после входа или регистрации

Дополнительная информация

Геометрия, про которую мы сегодня говорили, называется Евклидовой.

Как уже было сказано, часть понятий является фундаментальными. В данном случае первоначальные понятия Евклидовой геометрии предложил, как следует из названия, Евклид, живший в Древней Греции.

greece

Если быть более точным, жил он в Александрии и являлся первым математиком Александрийской школы.

О самом Евклиде, к сожалению, известно крайне мало информации.

Самая его известная книга “Начала” содержала в себе факты о геометрии, а также об арифметике.

Иногда книга издавалась с комментариями. Из одного из таких изданий с комментариями от Прокла мы знаем что-то про Евклида, хотя Прокл жил примерно на 800 лет позже Евклида.

Также существуют скульптуры и портреты, посвященные Евклиду, но есть сомнения в их достоверности.

По сути единственное, что известно более-менее точно, так это то, что ученые занимались вопросами геометрии еще в те времена.

Сохранились и другие работы Евклида, например, ему приписывают “Деление канона” (трактат о теории музыки), но им уделяется меньше внимания.

Заключительный тест

Пройти тест и получить оценку можно после входа или регистрации

Источник

Adblock
detector