Частота звуковых колебаний как найти

Частота звуковых волн

Чему равна частота звуковой волны – частота, длина и скорость звука. Изучите единицу измерения, формулу частоты звуковой волны, что определяет, диапазон.

Частота – количество повторяющихся событий за временную единицу.

Задача обучения

Основные пункты

Термины

Звуковые волны обладают частотой, то есть количеством вхождений повторяющегося события за временную единицу.

Частота колебаний звуковой волны основывается на длине волны и скорости звука: tstsukts

Нижний рисунок демонстрирует связь частоты и длины.

figure 18 02 02a

Звуковая волна формируется из источника, вибрирующего на частоте (f), и распространяется при v на длине λ

Частота звуковой волны определяет и другие характеристики. Можно использовать частоту и длину, чтобы отыскать скорость волны. Не забывайте, что она зависит от того, в какой среде перемещается звук. Высокие показатели появляются в твердых веществах. Формула: vs = fλ.

Период – длительность цикла повторяющегося события. В анимации показаны различные частоты и периоды (от наименьшего к наивысшему).

frequencyanimation

Три мигающих огонька: от самой низкой частоты (сверху) до наивысшей (снизу). F – частота в Герцах. Т – период в секундах

Единица измерения – Герц (Гц). Это количество циклов в секунду: 100 Гц = 100 циклам.

Различные виды улавливают разные частотные диапазоны. Люди способны услышать 20 – 200000 Гц, а собаки до 60000 Гц. У летучих мышей диапазон вырастает до 120000 Гц. Последние применяют ультразвук, чтобы сориентироваться в пространстве или найти объекты. Звуковые волны отбиваются от предметов. Животное улавливает, сколько времени нужно на возврат, и понимает, какая дистанция образовалась. Это эхолокация.

Источник

Звуковая волна – период, длина, частота и скорость распространения

Калькуляторы онлайн перевода длины звуковой, инфразвуковой или ультразвуковой
волны в частоту и наоборот. Таблица соответствия нот полного звукоряда частотам.

Звуковая волна – это механические колебания, которые в результате колебаний молекул вещества распространяются в какой-либо среде (в газе, жидкости или твёрдом теле) и, достигнув органов слуха человека, воспринимаются им как звук. Источник, создающий возмущение (колебания воздуха), называется источником звука.
Как уже было сказано, для распространения звука необходима какая-либо упругая среда. Поэтому в вакууме ори, не ори – тебя никто не услышит, по причине того, что звуковые волны распространяться не смогут, так как там нечему колебаться. да и слушать там, по большому счёту, тоже некому.
wave2

Период колебаний также не претерпел никаких изменений и по-прежнему равен:
T(сек) = 1 / F (Гц) = λ (м) / V (м/сек) .

Частота колебаний звукового сигнала F (Гц) – это параметр стабильный, практически не зависящий от среды распространения.
А вот скорость звука V (м/сек), а соответственно и длина звуковой волны – это величины, которые зависят не только от плотности вещества, но и от его упругости, а в случае с жидкостями и газами ещё – и от температуры, и атмосферного давления.

Зависимость скорости звуковой волны от свойств упругой среды легко прослеживается по следующей формуле:
V (м/сек) = √ Eупр (паскаль) / ρ (кг/м 3 ) , где Eупр представляет собой модуль объёмной упругости среды, а ρ – плотность среды.
Модуль упругости, так же как и плотность – это справочные величины, прописанные для конкретных материалов.
В качестве примера, ниже приведена таблица величины скорости распространения звука в различных средах:

Среда Скорость звука, м/сек
Воздух при 0° 331
Воздух при 30° 350
Вода 1450
Медь 3800
Дерево 4800
Железо 4900
Сталь 5600

Для газов параметры модуля объёмной упругости и плотности имеют ярко выраженную зависимость от температуры и атмосферного давления. Если углубиться, то скорость звука в газах можно вычислить по следующей формуле:
V (м/сек) = √ γ*Ратм / ρ , где γ = cp/сv – это отношение удельной теплоёмкости при постоянном давлении к удельной теплоёмкости при постоянном объёме, а Pатм – атмосферное давление, которое связано с температурой газообразной среды.
Поэтому, чтобы никого сильно не грузить, приведу и приближённую зависимость скорости звука (при нормальном атмосферном давлении) от температуры среды:
V (м/сек) = (331 + 0,6 * T°) , где 331 м/сек – это скорость звука при 0°С, а T° – температура в градусах Цельсия.

Теперь можно совместить формулы и получить простое соотношение, связывающее длину звуковой волны с частотой колебаний с учётом температуры среды:
λ (м) = (331 + 0,6 * T°) / F (Гц) .

Всё это без лишнего напряга несложно посчитать при помощи листа бумаги или деревянных счёт, ну а для пущего упрощения жизни человека, приведу и пару он-лайн считалок для перевода одного из параметров в другой.
Калькуляторы предполагают расчёты длины и частоты звуковой волны для воздушной среды при нормальном атмосферном давлении (760 мм ртутного столба).

Онлайн калькулятор расчёта длины звуковой волны по частоте

Онлайн калькулятор расчёта частоты по длине звуковой волны

Полный диапазон звуковых частот условно находится в пределах: 16. 20 000 Гц.
Ниже ( 0,001. 16Гц ) – инфразвук.
Выше ( 20. 100кГц ) – низкочастотный ультразвук,
ещё выше (100кГц. 1МГц) – высокочастотный ультразвук.

А для интересующихся приведу таблицу соответствия нот стандартного музыкального звукоряда частотам.

Источник

Частота колебаний звуковых волн

Частота колебаний звуковых волн – количество колебаний звуковой волны в секунду. Единица измерения – Герцы (Гц).

1 Гц = 1 колебание в секунду

Человек способен воспринимать звук в диапазоне от 20 до 20000 Гц.

Чем меньше частота, тем ниже звук и чем больше частота, тем звук выше.

Высота – это качество звука, которое зависит от частоты (свойство звука).

В музыкальном продакшне в основном используются частоты в диапазоне примерно 30 – 16000 Гц.

chastota kolebaniy zvukovoy volnyiУсловно весь частотный диапазон можно разделить на несколько полос.

Разделение частотного диапазона

1. Инфразвук – звук ниже порога слышимости (0 – 20 Гц)

2. Низкие частоты (20 – 100 Гц)

3. Нижняя середина (100 – 1000 Гц)

4. Средние частоты (1 – 4 кГц)

5. Высокие частоты (4 – 8 кГц)

7. Ультразвук (свыше 20 кГц)

radelenie chastot

Чем ниже частота колебаний звуковых волн, тем хуже человек её слышит, но при этом лучше чувствует вибрации.

Субъективную слышимость частот человеком характеризуют кривые равной громкости (или кривые Флэтчера-Мэнсона).

Низкие звуки имеют свойство маскировать более высокие. Они несут много энергии, отвечают за мощь и объём в треке.

Низкие частоты влияют на RMS трека, но при этом меньше всего воздействуют на субъективную громкость. Им необходимо намного больше свободного пространства чем средним и высоким.

Средние частоты отвечают за полноту и объём звучания. Необходимо очень осторожно работать с этими частотами чтобы контролировать «мутные» частоты (200 – 500 Гц).

Высокие частоты воспринимаются человеком как более громкие. Они отвечают за чистоту, детализацию и прозрачность звучания трека. В отличии от низких и средних, высокие частоты несут много пиковых всплесков, поэтому они больше всего влияют на пиковый уровень громкости.

Необходимо понимать, что звуки, частоты которых имеют соотношение 2:1, сливаются в одно целое.

Для того чтобы работать со звуком нужно знать особенности высоких, средних и низких частот. Только знания, подкреплённые практикой, могут сделать звучание ваших треков существенно лучше.

Источник

Частота звуковой волны

dark fb.4725bc4eebdb65ca23e89e212ea8a0ea dark vk.71a586ff1b2903f7f61b0a284beb079f dark twitter.51e15b08a51bdf794f88684782916cc0 dark odnoklas.810a90026299a2be30475bf15c20af5b

caret left.c509a6ae019403bf80f96bff00cd87cd

caret right.6696d877b5de329b9afe170140b9f935

Интенсивность звука

Интенсивность звука, сила звука, средняя по времени энергия, переносимая звуковой волной через единичную площадку, перпендикулярную к направлению распространения волны в единицу времени. Для периодического звука усреднение производится либо за промежуток времени, большой по сравнению с периодом, либо за целое число периодов.

Для плоской синусоидальной бегущей волны И. з.

где р — амплитуда звукового давления, v — амплитуда колебательной скорости, r — плотность среды, с — скорость звука в ней. В сферической бегущей волне И. з. обратно пропорциональна квадрату расстояния от источника. В стоячей волне I = 0, т. е. потока звуковой энергии в среднем нет.

Длительность звука

– это продолжительность звуг;а со свойственным ему количеством колебаний в единицу времени. В русском языке ударяемые гласные длительнее безударных.

Источник

Очень часто походя употребляют такие вроде бы понятные термины, как спектр, фаза, частота и прочие. Но зачастую мы до конца не понимаем, что же это на самом деле такое. Что значат эти термины на самом деле, как можно «пощупать» их истинное значение? Можно пойти в библиотеку и почитать там книги по теории радиотехники и цифровой обработке сигналов, но времени постоянно не хватает даже на более важные дела. Поэтому автор попытался дать читателю выжимки из радиотехнических учебников, объясненные «на пальцах» и самый минимум формул (если кто-то заинтересовался более «математическим» изложением материала).

Волновая форма сигнала (звука). Период. Частота

Что такое звук? Это переменное звуковое (воздушное) давление на барабанную перепонку. Ухо воспринимает как звук только изменение давления. Когда звучит отдельная нота давление периодически то нарастает, то убывает и этот процесс циклически повторяется.

f = 1 / T (формула частоты)

Причем закон (форма) изменения звукового давления не изменяется от периода к периоду.

Если у нас звучит мелодия, то волны, порождаемые разными нотами (которые то появляются, то исчезают), складываются друг с другом в общую волну, которая уже не имеет периода (цикла повтора).

А что же такое шум?

Звук, как известно распространяется с задержкой, которая зависит от расстояния от источника до человеческого уха. Как это происходит?

Длина волны

Механические колебания источника звука (музыкального инструмента или динамика колонки) сжимают/разрежают (выталкивают/притягивают) воздух около себя. Сжатый воздух начинает расширятся прочь от источника звука, сжимая в свою очередь соседнюю воздушную область. Таким образом область сжатого воздуха путешествует от источника звука к уху.

Расстояние, между областями одинакового сжатия воздуха называется длиной звуковой волны.

L = M / f (формула длины волны),

Длина волны для:

20 Гц L20 = (331,46 м/с) / (20 Гц) = 16,5 м.

100 Гц L100 = (331,46 м/с) / (100 Гц) = 3,3 м.

1000 Гц L1000 = (331,46 м/с) / (1000 Гц) = 0,33 м = 33 см.

10000 Гц L10000 = (331,46 м/с) / (10000 Гц) = 0,033 м = 3,3 см.

20000 Гц L10000 = (331,46 м/с) / (20000 Гц) = 0,017 м = 1,7 см.

Чтобы «надавить» на ухо, область сжатого звука должна затратить некоторое время, чтобы пройти путь от музыкального инструмента до уха. Этим и объясняется задержка звука.

Расстояние вносит задержку распространения звука не зависящую от частоты, так как скорость звука на разных частотах одинакова.

Dt = l / M (формула задержки распространения звука),

1 метр вносит задержку распространения звука

Dt= (1 м) / (331,46 м/с) = 0,003 секунды или 3 миллисекунды (мс).

Источник

Adblock
detector