Частотная модуляция сигнала как работает

Теория радиоволн: аналоговая модуляция

slP92

Амплитудная модуляция

При амплитудной модуляции, огибающая амплитуд несущего колебания изменяется по закону, совпадающему с законом передаваемого сообщения. Частота и фаза несущего колебания при этом не меняется.

wo2Hf

Одним из основных параметров АМ, является коэфициент модуляции(M).
Коэффициент модуляции — это отношение разности между максимальным и минимальным значениями амплитуд модулированного сигнала к сумме этих значений(%).
Проще говоря, этот коэффициент показывает, насколько сильно значение амплитуда несущего колебания в данный момент отклоняется от среднего значения.
При коэффициенте модуляции больше 1, возникает эффект перемодуляции, в результате чего происходит искажение сигнала.

79a366aa848e2995380364bc83b74e92

Данный спектр свойственен для модулирующего колебания постоянной частоты.

На графике, по оси Х представлена частота, по оси У — амплитуда.
Для АМ, кроме амплитуды основной частоты, находящейся в центре, представлены также значения амплитуд справа и слева от частоты несущей. Это так называемые левая и правая боковые полосы. Они отнесены от частоты несущей на расстояние равное частоте модуляции.
Расстояние от левой до правой боковой полосы называют ширина спектра.
В нормальном случае, при коэффициенте модуляции

Источник

Частотная модуляция

Технологии модуляции п ·Аналоговая модуляция
AM · SSB · ЧМ(FM) · ЛЧМ · ФМ(PM) · СКМ
Цифровая модуляция
АМн · ФМн · КАМ · ЧМн · GMSK
OFDM · COFDM · TCM
Импульсная модуляция
АИМ · ДМ · ИКМ · ΣΔ · ШИМ · ЧИМ · ФИМ
Расширение спектра
FHSS · DSSS
См. также: Демодуляция

250px Amfm3

magnify clip

250px Frequency modulation

magnify clip

Частотная модуляция (ЧМ) — вид аналоговой модуляции, при котором информационный сигнал управляет частотой несущего колебания. По сравнению с амплитудной модуляцией здесь амплитуда остаётся постоянной.

Частотная модуляция была предложена Эдвином Армстронгом и запатентована им 26 декабря 1933 года.

Применение

Частотная модуляция применяется для высококачественной передачи звукового (низкочастотного) сигнала в радиовещании (в диапазоне УКВ), для звукового сопровождения телевизионных программ, передачи сигналов цветности в телевизионном стандарте SECAM, видеозаписи на магнитную ленту, музыкальных синтезаторах.

Высокое качество кодирования аудиосигнала обусловлено тем, что при ЧМ применяется большая (по сравнению с шириной спектра сигнала АМ) девиация несущего сигнала, а в приёмной аппаратуре используют ограничитель амплитуды радиосигнала для ликвидации импульсных помех.

См. также

Ссылки

40px Wiki letter w.svg

Полезное

Смотреть что такое «Частотная модуляция» в других словарях:

частотная модуляция — ЧМ Модуляция синусоидального колебания путем изменения частоты в соответствии с амплитудными вариациями модулирующего сигнала. [http://www.vidimost.com/glossary.html] частотная модуляция [IEV number 314 08 02] EN frequency modulation process by… … Справочник технического переводчика

ЧАСТОТНАЯ МОДУЛЯЦИЯ — изменение частоты колебаний по заданному закону, медленное по сравнению с периодом этих колебаний (см. Модуляция колебаний). Преимущество частотной модуляции перед амплитудной модуляцией большая помехоустойчивость. Применяется для передачи звука… … Большой Энциклопедический словарь

ЧАСТОТНАЯ МОДУЛЯЦИЯ — ЧАСТОТНАЯ МОДУЛЯЦИЯ, форма радиопередачи, особый способ передачи радиоволн, излучаемых по сигналу радиовещания. Технический прием, который позволил сделать прием радиоволн совершенно свободным от статических помех. И хотя при этом ограничено… … Научно-технический энциклопедический словарь

ЧАСТОТНАЯ МОДУЛЯЦИЯ — вид модуляции колебаний, при к рой частота высокочастотного колебания изменяется во времени по закону, соответствующему передаваемому сигналу. Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 … Физическая энциклопедия

частотная модуляция — изменение частоты колебаний по заданному закону, медленное по сравнению с периодом этих колебаний (см. Модуляция колебаний). Преимущество частотной модуляции перед амплитудной модуляцией большая помехоустойчивость. Применяется для передачи звука … Энциклопедический словарь

частотная модуляция — dažnio moduliavimas statusas T sritis automatika atitikmenys: angl. frequency modulation vok. Frequenzmodulation, f rus. частотная модуляция, f pranc. modulation de fréquence, f … Automatikos terminų žodynas

частотная модуляция — dažnio moduliavimas statusas T sritis Standartizacija ir metrologija apibrėžtis Veiksmas, kuriuo pagal tam tikrą dėsnį keičiamas nešlio dažnis. atitikmenys: angl. frequency modulation vok. Frequenzmodulation, f rus. частотная модуляция, f pranc.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

частотная модуляция — dažnio moduliavimas statusas T sritis fizika atitikmenys: angl. frequency modulation vok. Frequenzmodulation, f rus. частотная модуляция, f pranc. modulation de fréquence, f … Fizikos terminų žodynas

Частотная модуляция — вид модуляции колебаний (См. Модуляция колебаний), при которой частота несущего высокочастотного колебания изменяется во времени по закону, соответствующему передаваемому сигналу. Особенность Ч. м. высокая помехозащищенность. Ч. м.… … Большая советская энциклопедия

ЧАСТОТНАЯ МОДУЛЯЦИЯ — изменение частоты колебаний по заданному закону, медленное по сравнению с периодом этих колебаний (см. Модуляция колебаний). Преимущество Ч.м. перед амплитудной модуляцией большая помехоустойчивость. Применяется для передачи звука в телевидении и … Естествознание. Энциклопедический словарь

Источник

Что такое модуляция и разновидности модулированных сигналов?

Общие сведения о модуляции

Модуляция это процесс преобразования одного или нескольких информационных параметров несущего сигнала в соответствии с мгновенными значениями информационного сигнала.

В результате модуляции сигналы переносятся в область более высоких частот.

Использование модуляции позволяет:

Модуляция осуществляется в устройствах модуляторах. Условное графическое обозначение модулятора имеет вид:

mris1

При модуляции на вход модулятора подаются сигналы:

u(t) — модулирующий, данный сигнал является информационным и низкочастотным (его частоту обозначают W или F);

S(t) — модулируемый (несущий), данный сигнал является неинформационным и высокочастотным (его частота обозначается w0 или f0);

Sм(t) — модулированный сигнал, данный сигнал является информационным и высокочастотным.

В качестве несущего сигнала может использоваться:

Так как в процессе модуляции изменяются информационные параметры несущего колебания, то название вида модуляции зависит от изменяемого параметра этого колебания.

1. Виды аналоговой модуляции:

2. Виды импульсной модуляции:

Амплитудная модуляция

Амплитудная модуляция — процесс изменения амплитуды несущего сигнала в соответствии с мгновенными значениями модулирующего сигнала.

Рассмотрим математическую модель амплитудно-модулированного (АМ) сигнала при гармоническом модулирующем сигнале. При воздействии модулирующего сигнала

на несущее колебание

происходит изменение амплитуды несущего сигнала по закону:

где аам — коэффициент пропорциональности амплитудной модуляции.

Подставив (3) в математическую модель (2) получим:

Вынесем Um за скобки:

Отношение аам Umu/Um = mам называется коэффициентом амплитудной модуляции. Данный коэффициент не должен превышать единицу, т. к. в этом случае появляются искажения огибающей модулированного сигнала называемые перемодуляцией. С учетом mам математическая модель АМ сигнала при гармоническом модулирующем сигнале будет иметь вид:

Если модулирующий сигнал u(t) является негармоническим, то математическая модель АМ сигнала в этом случае будет иметь вид:

Рассмотрим спектр АМ сигнала для гармонического модулирующего сигнала. Для этого раскроем скобки математической модели модулированного сигнала, т. е. представим его в виде суммы гармонических составляющих.

Как видно из выражения в спектре АМ сигнала присутствует три составляющих: составляющая несущего сигнала и две составляющих на комбинационных частотах. Причем составляющая на частоте ?0? называется нижней боковой составляющей, а на частоте ?0 + ?верхней боковой составляющей. Спектральные и временные диаграммы модулирующего, несущего и амплитудно-модулированного сигналов имеют вид (рисунок 2).

mris2

Ширина спектра для данного сигнала будет определятся

Если же модулирующий сигнал является случайным, то в этом случае в спектре составляющие модулирующего сигнала обозначают символически треугольниками (рисунок 3).

mris3

Ширина спектра для данного сигнала будет определятся

На рисунке 4 приведены временные и спектральные диаграммы АМ сигналов при различных индексах mам. Как видно при mам=0 модуляция отсутствует, сигнал представляет собой немодулированную несущую, соответственно и спектр этого сигнала имеет только составляющую несущего сигнала (рисунок 4,

mris4

а), при индексе модуляции mам=1 происходит глубокая модуляция, в спектре АМ сигнала амплитуды боковых составляющих равны половине амплитуды составляющей несущего сигнала (рисунок 4в), данный вариант является оптимальным, т. к. энергия в большей степени приходится на информационные составляющие. На практике добиться коэффициента равного едините тяжело, поэтому добиваются соотношения 0 1 происходит перемодуляция, что, как отмечалось выше, приводит к искажению огибающей АМ сигнала, в спектре такого сигнала амплитуды боковых составляющих превышают половину амплитуды составляющей несущего сигнала (рисунок 4г).

Основными достоинствами амплитудной модуляции являются:

Недостатками этой модуляции являются:

Амплитудная модуляция нашла широкое применение:

Балансная и однополосная модуляция

Как отмечалось выше, одним из недостатков амплитудной модуляции является наличие составляющей несущего сигнала в спектре модулированного сигнала. Для устранения этого недостатка применяют балансную модуляцию. При балансной модуляциипроисходит формирование модулированного сигнала без составляющей несущего сигнала. В основном это осуществляется путем использования специальных модуляторов: балансного или кольцевого. Временная диаграмма и спектр балансно-модулированного (БМ) сигнала представлен на рисунке 5.

mris5

Также особенностью модулированного сигнала является наличие в спектре двух боковых полос несущих одинаковую информацию. Подавление одной из полос позволяет уменьшить спектр модулированного сигнала и, соответственно, увеличить число каналов в линии связи. Модуляция при которой формируется модулированный сигнал с одной боковой полосой (верхней или нижней) называется однополосной. Формирование однополосно-модулированного (ОМ) сигнала осуществляется из БМ сигнала специальными методами, которые рассматриваются ниже. Спектры ОМ сигнала представлены на рисунке 6.

mris6

Частотная модуляция

Частотная модуляция — процесс изменения частоты несущего сигнала в соответствии с мгновенными значениями модулирующего сигнала.

Рассмотрим математическую модель частотно-модулированного (ЧМ) сигнала при гармоническом модулирующем сигнале. При воздействии модулирующего сигнала

на несущее колебание

происходит изменение частоты несущего сигнала по закону:

где ачм — коэффициент пропорциональности частотной модуляции.

Величина Dwm называется девиацией частоты. Следовательно, девиация частоты показывает наибольшее отклонение частоты модулированного сигнала от частоты несущего сигнала.

f12

называется индексом частотной модуляции.

Учитывая (12) и (13) математическая модель ЧМ сигнала при гармоническом модулирующем сигнале будет иметь вид:

Временные диаграммы, поясняющие процесс формирования частотно-модулированного сигнала приведены на рисунке 7. На первых диаграммах а) и б) представлены соответственно несущий и модулирующий сигналы, на рисунке в) представлена диаграмма показывающая закон изменения частоты ЧМ сигнала. На диаграмме г) представлен частогтно-модулированный сигнал соответствующий заданному модулирующему сигналу, как видно из диаграммы любое изменение амплитуды модулирующего сигнала вызывает пропорциональное изменение частоты несущего сигнала.

mris7

Для построения спектра ЧМ сигнала необходимо разложить его математическую модель на гармонические составляющие. В результате разложения получим

где Jk(Mчм) — коэффициенты пропорциональности.

Jk(Mчм) определяются по функциям Бесселя и зависят от индекса частотной модуляции. На рисунке 8 представлен график содержащий восемь функций Бесселя. Для определения амплитуд составляющих спектра ЧМ сигнала необходимо определить значение функций Бесселя для заданного индекса. Причем как

mris8

видно из рисунка различные функции имеют начало в различных значениях Мчм, а следовательно, количество составляющих в спектре будет определятся Мчм (с увеличивается индекса увеличивается и количество составляющих спектра). Например необходимо определить коэффициенты Jk(Мчм) при Мчм=2. По графику видно, что при заданном индексе можно определить коэффициенты для пяти функций (J0, J1, J2, J3, J4) Их значение при заданном индексе будет равно: J0=0,21; J1=0,58; J2=0,36; J3=0,12; J4=0,02. Все остальные функции начинаются после значения Мчм=2 и равны, соответственно, нулю. Для приведенного примера количество составляющих в спектре ЧМ сигнала будет равно 9: одна составляющая несущего сигнала (Um J0) и по четыре составляющих в каждой боковой полосе (Um J1; Um J2; Um J3; Um J4).

Еще одной важной особенностью спектра ЧМ сигнала является то, что можно добиться отсутствия составляющей несущего сигнала или сделать ее амплитуду значительно меньше амплитуд информационных составляющих без дополнительных технических усложнений модулятора. Для этого необходимо подобрать такой индекс модуляции Мчм, при котором J0(Мчм) будет равно нулю (в месте пересечения функции J0 с осью Мчм), например Мчм=2,4.

Достоинством частотной модуляции являются:

Основным недостатком данной модуляции является большая ширина спектра модулированного сигнала.

Частотная модуляция используется:

mris9

Фазовая модуляция

Фазовая модуляция — процесс изменения фазы несущего сигнала в соответствии с мгновенными значениями модулирующего сигнала.

Рассмотрим математическую модель фазо-модулированного (ФМ) сигнала при гармоническом модулирующем сигнале. При воздействии модулирующего сигнала

на несущее колебание

происходит изменение мгновенной фазы несущего сигнала по закону:

где афм — коэффициент пропорциональности частотной модуляции.

Подставляя ?фм(t) в S(t) получаем математическую модель ФМ сигнала при гармоническом модулирующем сигнале:

Произведение афм Umu=Djm называется индексом фазовой модуляции или девиацией фазы.

Поскольку изменение фазы вызывает изменение частоты, то используя (11) определяем закон изменения частоты ФМ сигнала:

Произведение афмUmu?=??m является девиацией частоты фазовой модуляции. Сравнивая девиацию частоты при частотной и фазовой модуляциях можно сделать вывод, что и при ЧМ и при ФМ девиация частоты зависит от коэффициента пропорциональности и амплитуды модулирующего сигнала, но при ФМ девиация частоты также зависит и от частоты модулирующего сигнала.

Временные диаграммы поясняющие процесс формирования ФМ сигнала приведены на рисунке 10.

mris10

Ширина спектра ФМ сигнала определяется выражением:

Достоинствами фазовой модуляции являются:

Дискретная двоичная модуляция (манипуляция гармонической несущей)

Дискретная двоичная модуляция (манипуляция) — частный случай аналоговой модуляции, при которой в качестве несущего сигнала используется гармоническая несущая, а в качестве модулирующего сигнала используется дискретный, двоичный сигнал.

Различают четыре вида манипуляции:

Временные и спектральные диаграммы модулированных сигналов при различных видах манипуляции представлены на рисунке 11.

При амплитудной манипуляции, также как и при любом другом модулирующем сигнале огибающая SАМн(t) повторяет форму модулирующего сигнала (рисунок 11, в).

При фазовой манипуляции фаза несущего сигнала изменяется на 180° в момент изменения амплитуды модулирующего сигнала. Если следует серия из нескольких импульсов, то фаза несущего сигнала на этом интервале не изменяется (рисунок 11, д).

mris11

При относительно-фазовой манипуляции фаза несущего сигнала изменяется на 180° лишь в момент подачи импульса, т. е. при переходе от активной паузы к посылке (0?1) или от посылке к посылке (1?1). При уменьшении амплитуды модулирующего сигнала фаза несущего сигнала не изменяется (рисунок 11, е). Спектры сигналов при ФМн и ОФМн имеют одинаковый вид (рисунок 9, е).

Сравнивая спектры всех модулированных сигналов можно отметить, что наибольшую ширину имеет спектр ЧМн сигнала, наименьшую — АМн, ФМн, ОФМн, но в спектрах ФМн и ОФМн сигналов отсутствует составляющая несущего сигнала.

В виду большей помехоустойчивости наибольшее распространение получили частотная, фазовая и относительно-фазовая манипуляции. Различные их виды используются в телеграфии, при передаче данных, в системах подвижной радиосвязи (телефонной, транкинговой, пейджинговой).

Импульсная модуляция

Импульсная модуляция — это модуляция, при которой в качестве несущего сигнала используется периодическая последовательность импульсов, а в качестве модулирующего может использоваться аналоговый или дискретный сигнал.

Поскольку периодическая последовательность характеризуется четырьмя информационными параметрами (амплитудой, частотой, фазой и длительностью импульса), то различают четыре основных вида импульсной модуляции:

Временные диаграммы импульсно-модулированных сигналов представлены на рисунке 12.

При АИМ происходит изменение амплитуды несущего сигнала S(t) в соответствии с мгновенными значениями модулирующего сигнала u(t), т. е. огибающая импульсов повторяет форму модулирующего сигнала (рисунок 12, в).

При ШИМ происходит изменение длительности импульсов S(t) в соответствии с мгновенными значениями u(t) (рисунок 12, г).

mris12

При ЧИМ происходит изменение периода, а соответственно и частоты, несущего сигнала S(t) в соответствии с мгновенными значениями u(t) (рисунок 12, д).

При ФИМ происходит смещение импульсов несущего сигнала относительно их тактового (временного) положения в немодулированной несущей (тактовые моменты обозначены на диаграммах точками Т, 2Т, 3Т и т. д.). ФИМ сигнал представлен на рисунке 12, е.

Поскольку при импульсной модуляции переносчиком сообщения является периодическая последовательность импульсов, то спектр импульсно-модулированных сигналов является дискретным и содержит множество спектральных составляющих. Этот спектр представляет собой спектр периодической последовательности импульсов в котором возле каждой гармонической составляющей несущего сигнала находятся составляющие модулирующего сигнала (рисунок 13). Структура боковых полос возле каждой составляющей несущего сигнала зависит от вида модуляции.

mris13

Также важной особенностью спектра импульсно-модулированных сигналов является то, что ширина спектра модулированного сигнала, кроме ШИМ, не зависит от модулирующего сигнала. Она полностью определяется длительностью импульса несущего сигнала. Поскольку при ШИМ длительность импульса изменяется и зависит от модулирующего сигнала, то при этом виде модуляции и ширина спектра также зависти от модулирующего сигнала.

Частоту следования импульсов несущего сигнала может быть определена по теореме В. А. Котельникова как f0 =2Fmax. При этом Fmax это верхняя частота спектра модулирующего сигнала.

Передача импульсно модулированных сигналов по высокочастотным линиям связи невозможна, т. к. спектр этих сигналов содержит низкочастотные составляющий. Поэтому для передачи осуществляют повторную модуляцию. Это модуляция, при которой в качестве модулирующего сигнала используют импульсно-модулированный сигнал, а в качестве несущего гармоническое колебание. При повторной модуляции спектр импульсно-модулированного сигнала переносится в область несущей частоты. Для повторной модуляции может использоваться любой из видов аналоговой модуляции: АМ, ЧС, ФМ. Полученная модуляция обозначается двумя аббревиатурами: первая указывает на вид импульсной модуляции а вторая — на вид аналоговой модуляции, например АИМ-АМ (рисунок 14, а) или ШИМ-ФМ (рисунок 14, б) и т. д.

mris14

Источник

Как данные передаются по радио?

В одном из комментариев к предыдущим статьям был задан вопрос, можно ли по виду сигнала определить вид его модуляции. Идея рассмотреть основные виды модуляции показалась довольно-таки интересной.

rgqcse5wj1p1n1essywngui5jkk

Попробуем разобраться, без формул и максимально просто, как можно передать данные из точки «А» в точку «В».

OOK (On-Off Keying)

Самый простой вид цифрового кодирования. Просто включаем-выключаем передатчик в соответствии с двоичным сигналом:

image loader

На спектре такой сигнал выглядит примерно так, их довольно много на частоте

image loader

Схема передатчика очень проста, поэтому активно используется в беспроводных пультах, радиокнопках и прочих устройствах ценой 1-2$. Никакого шифрования здесь обычно нет, частота и битовая последовательность жестко «зашиты», передать и принять сигнал может любой желающий, так что ставить такой пульт на дверь гаража, где стоит Lamborgini, я бы не стал, но для ночника у кровати вполне сойдет (такая лампа, купленная в ближайшем MediaMarkt, работает у меня 3 года, ложных срабатываний не было ни разу, принцип «неуловимого Джо» в действии).

Интересно отметить, что исторически это наверное один из самых первых способов радиопередачи. Если включать-выключать передатчик с помощью ключа и принимать сигнал на слух или на бумажную ленту, мы получим старую добрую азбуку Морзе.

Амплитудная модуляция (АМ)

АМ мы наверное сможем видеть еще долго — модуляция используется как в вещательных станциях, так и в передатчиках авиадиапазона 118-137 МГц. Отличительная особенность АМ — спектр симметричен относительно центральной частоты. «На глаз» даже можно примерно понять, что передается, речь или музыка. Скриншот из онлайн приемника Websdr Twente:

image loader

Исторически АМ был одним из первых способов приема и передачи речи — всем известная «школьная» схема детекторного приемника отличалась крайней простотой, и даже не требовала батареек для приема — для работы высокоомных наушников было достаточно энергии радиоволн. Любопытно, что такие приемники выпускались в СССР серийно аж до 60х годов:

10alq4cnhcfdq7vcfbuh6ceqeuo

Детекторный приемник «Комсомолец» (с) Википедия

Видимо, с доступностью как приемников, так и источников питания в глубинке были определенные проблемы, так что детекторный приемник долго оставался актуален.

Однополосная модуляция (USB, LSB, SSB)

Однополосная модуляция является частным случаем амплитудной. Как было сказано выше, спектр АМ сигнала симметричен относительно центра. Но можно передавать лишь «одну половину» сигнала, что обеспечивает большую дальность при той же мощности передатчика:

image loader
Однополосная модуляция (с) Википедия

Как видно из картинки, можно настроиться на верхнюю или нижнюю боковую полосу, такой режим в приемнике или передатчике соответственно обозначается USB или LSB.

В режиме однополосной модуляции работают служебные станции, передаются метеосводки на коротких волнах, также он используется радиолюбителями. Но не менее важен он еще и тем, что в режиме USB или LSB спектр сигнала фактически переносится с радиочастоты на звуковую без искажений — что позволяет принимать различные виды цифровых сигналов, рассмотренных ниже. Это важно иметь в виду при выборе радиоприемника — цифровые виды связи (FSK, PSK и пр) могут приниматься и декодироваться лишь в режиме однополосной модуляции, простой бытовой приемник с поддержкой «обычной» AM принять такие сигналы не сможет.

Частотная модуляция (FM)

В частотной модуляции работает всем известное FM-вещание. Интересно отметить, что в передатчике FM-станции кодируется не только звук — передается сложный сигнал, включающий моно и стерео каналы, пилот-тон, RDS и пр. Чтобы не путать с «обычной» FM, у инженеров такая модуляция обычно называется WFM (Wide FM). В программе HDSDR несложно увидеть спектр радиостанции после декодирования:

image loader

На сигнале (справа снизу) несложно видеть пилот-тон на частоте 19 КГц, RDS, моно и стерео-каналы FM-вещания. В отличие от WFM, радионяни, рации и прочие аналогичные устройства используют «узкую» FM (NFM, Narrow FM) модуляцию, где передается только звук.

Частотная модуляция активно используется и для цифровых сигналов, в этом случае для передачи бинарного кода может использоваться переключение двух частот. В качестве примера можно привести сигнал немецкой станции Pinneberg, наличие двух частот хорошо видно на спектре:

image loader

Pinneberg передает метеосводки судам на длинных, средних и коротких волнах. Частот в принципе, может быть и больше 2х. Пример такого сигнала — радиолюбительский FT8:

image loader

С помощью FT8 радиолюбители могут обмениваться короткими сообщениями на расстоянии в несколько тысяч километров при мощности всего лишь несколько ватт.

Интересно, что модуляция может быть и комбинированной — например в авиации используется система ACARS, передающая текстовые сообщения. Цифровой FM сигнал передается через АМ передатчик. Зачем так сложно? Вероятно, используется уже готовый передатчик, ко входу которого просто подключили цифровую схему, формирующую FM-сигнал. Legacy в чистом виде, но вероятно, это дешевле, чем менять миллионы передатчиков в аэропортах и самолетах во всем мире.

Фазовая модуляция (PSK)

Кроме частоты, мы можем менять и фазу сигнала, что дает нам фазовую модуляцию. Такие сигналы могут уверенно приниматься на больших расстояниях, и используются в частности, в спутниковой связи. Из радиолюбительских протоколов можно отметить PSK31, который одно время был весьма популярен.

image loader

С помощью PSK31 можно обмениваться информацией в виде «текстового чата», подключив трансивер к компьютеру. Фаз может быть больше 2х, например 4, 18 или 16, все зависит от скорости и канала связи.

Можно менять и фазу и амплитуду одновременно, что дает нам еще большую скорость, но требует более сложного кодирования и декодирования. В качестве примера такого сигнала можно привести QAM. Такой сигнал наглядно проще всего изобразить на фазовой плоскости:

image loader

Модуляция QAM используется при передаче данных в стандарте LTE и в цифровом телевидении DVB-T.

Orthogonal frequency-division multiplexing (OFDM)

Одним из современных методов модуляции является OFDM. Его суть состоит в том, что отдельные биты сигнала можно передавать параллельно, представляя сигнал в виде независимо работающих частотных каналов (subcarriers), каждый из которых передает свой отдельный бит. Есть определенные математические правила, гарантирующие что каналы не будут пересекаться и могут быть декодированы.

В качестве примера можно привести DRM, сигналы такого формата можно увидеть на вещательных диапазонах, разница между АМ и DRM хорошо видна на спектре:

image loader

Это цифровой сигнал шириной 10 КГц, в котором параллельно передается 206 несущих с интервалом 47 Гц. Стандарт DRM (Digital Radio Mondiale) используется для передачи цифрового радио на средних и коротких волнах, просьба не путать с другим стандартом Digital Rights Management.

OFDM используется и в WiFi (802.11a), структура сигнала там сложнее, желающие могут изучить PDF самостоятельно.

Code-division multiple access (CDMA)

Другой способ широкополосной передачи — разделение данных. Данные для нескольких получателей могут быть комбинированы в один сигнал с помощью специальной функции (например Walsh code), которая гарантирует как прямое, так и обратное преобразование. Одним из ключевых факторов и в OFDM и в CDMA является так называемая «ортогональность», получаемые сигналы не должны «смешиваться», чтобы из результирующего сигнала можно было извлечь исходные данные.

Кодирование CDMA используется в мобильных сетях 3G. Хороший пример разбора CDMA с помощью ручки и бумаги можно найти здесь, интересующимся рекомендую посмотреть.

Заключение

Все что приведено выше, это разумеется, очень краткое объяснение «на пальцах», в реальности, описание только одного декодера может занять в несколько раз больше текста чем вся статья целиком, да и вряд ли многим здесь это нужно — Хабр это все же не научный журнал. Впрочем, общее впечатление у читателей надеюсь все же осталось. При наличии интереса у аудитории (что будет определяться по оценкам текста:) какой-либо из сигналов можно будет разобрать более подробно.

В завершение интересно отметить, что различные схемы кодирования — это не просто какая-то математическая абстракция — все это активно используется, в том числе и в военных целях (например протокол STANAG модемов NATO). Этот скриншот сделан во время написания текста с помощью онлайн-приемника Websdr:

image loader

Как можно видеть, несмотря на наличие интернета практически в любой обитаемой точке планеты, возможность передать данные напрямую, анонимно и без посредников, весьма актуальна — каждая линия на графике это работающий прямо сейчас канал связи (и да, внимательные читатели могут заметить здесь даже сигналы азбуки морзе, несмотря на 2020 год).

Источник

Adblock
detector