Хаос в синергетике рассматривается как

Хаос и порядок. Синергетика

Под самоорганизацией в синергетике понимаются процессы возникновения макроскопически упорядоченных пространственно временных структур в сложных нелинейных системах. Система под воздействием самых незначительных воздействии, или флуктуации, может резко изменить свое состояние. Этот переход часто характеризуют как возникновение порядка из хаоса.

Интересно, что как в установлении, так и в разрушении порядка огромную роль играют маленькие воздействия (флукту-ации). Благодаря этим воздействиям система в одних случаях при-обретает упорядоченность, в других эта упорядоченность, исчер-пав себя, разрушается, при этом система попадает в состояние неустойчивости. Смена режимов устойчивости и неустойчивос-ти происходит в системах, где есть подвод вещества, энергии и ин-формации. До развития синергетики наука рассматривала отдель-но хаос и порядок, причем основное внимание уделялось имен-но порядку, ибо его можно описать относительно простыми ма-тематическими уравнениями. Синергетика выявляет пути зарож-дения в хаосе порядка, его поддержания и распада.

Представьте себе нагрев воды в кастрюле. За счет подвода энер-гии вода начинает нагреваться, появляются пузырьки воздуха в во-де. А возникают они на случайных местах, в силу случайностей. Но если пузырек образовался, то в уже достаточно нагретой во-де он увеличивается в размерах и поднимается к поверхности во-ды, где лопается. При нагревании воды хаотичность движения ее молекул возрастает, но именно в этом хаосе устанавливается порядок, развивается история капель, наполненных водяными парами.

Исходя из успехов синергетики ученые объясняют возник-новение и развитие упорядоченных систем перестройкой хао-са. Все возникает из хаоса.Поскольку система «забывает» свои прошлые состояния, то неизвестно, что было до хаоса и в прин-ципе это невозможно узнать.

Порядок и хаос: механизм перехода (самоорганизация)

Более углубленный анализ этих процессов показывает, что они могут протекать в разных направлениях: диссипативные структуры могут объединяться в разной после-довательности и по разным правилам, в результате чего могут возникать иерархи-ческие системы разного типа. Аналогичная картина наблюдается и в случае деиерархизации: сложная диссипативная структура может распадаться на более простые разными способами, в результате чего в роли элементарных структур также могут выступать диссипативные структуры разного типа.

С этой точки зрения диссипативная структура претерпевает множество бифур-каций, как бы балансируя между простыми и странными аттракторами. Если за исходную систему отсчета принять состояние, в котором реальность подвергается не иерархизации, а деиерархизации, то процесс самоорганизации примет форму чере-дования дифференциации и интеграции социальной реальности.

Источник

Хаос в синергетике

После прочтения этого раздела кто-то из читателей, возможно, спросит: а какое, собственно, отношение имеет к описанным хаотическим процессам синергетика? Ведь синергетика — это учение о взаимодействии, причем речь постоянно идет о взаимодействии множества элементов в рамках единой системы. Однако в примере о движении планеты, вращающейся в системе двух звезд, мы имели дело всего с тремя телами. Кроме того, у читателя вообще могло создаться впечатление, что взаимодействие множества отдельных систем всегда ведет к возникновению упорядоченных структур или процессов. Эти моменты требуют гораздо более подробного рассмотрения, и в особенности потому, что полученные в ходе такого рассмотрения выводы мы впоследствии сможем использовать и в других областях — например при обсуждении процессов, протекающих в экономической сфере. Однако для разъяснения названных вопросов мы будем вынуждены прибегнуть к некоторым абстракциям, а посему менее заинтересованным читателям чтение данной главы можно на этом закончить и сразу перейти к следующей.

Связь с синергетикой станет ясна, как только мы обратимся к понятию «параметр порядка». Ранее на ряде примеров было показано, что синергетическая система часто может управляться не одним-единственным, а сразу несколькими параметрами порядка. Скажем, возникновение в жидкости гексагональных ячеистых структур возможно лишь в результате сотрудничества трех различных параметров порядка: все они представлены волнами, образующими равносторонние треугольники. В других случаях — допустим, в ходе эволюции — различные параметры порядка могут уже не сотрудничать друг с другом, а напротив, конкурировать. Макроскопические свойства синергетических систем, таким образом, могут быть описаны через взаимодействие либо конкуренцию параметров порядка.

Формулируя задачи синергетики на языке математики, мы снова и снова пользуемся одними и теми же уравнениями, хотя рассматриваемые системы имеют при этом совершенно различную природу. Это свидетельствует как раз о том, что известные уравнения, описывающие параметры порядка, могут охватывать и хаотические процессы. Вспомним поведение нагреваемой снизу жидкости: коррелирующие друг с другом в фазе хаотического движения три параметра порядка вынуждают систему совершать колебания, переходя от одного типа движения к другому.

В результате предпринятых нами более тщательных исследований подобная корреляция параметров порядка представляется в следующем виде: на некотором временном интервале один из параметров порядка доминирует и порабощает два других, предписывая им подчинение его собственному типу движения; спустя какое-то время этот параметр порядка теряет свое господство, положением завладевает следующий параметр порядка, и «игра» продолжается. Следует особо отметить, что «смена власти» происходит абсолютно не регулярно, т. е. хаотично.

К упомянутой группе уравнений принадлежат и те, что описывают движение небесных тел, причем в роли параметров порядка в этом случае выступают координаты центров тяжести.

Сегодня нам известно, что при наличии большого количества коррелирующих параметров порядка следует ожидать хаотического движения, поэтому хаотическими следует признать и те случаи, которые прежде отбрасывались либо как следствие ошибки в измерениях, либо как противоречащие теоретическим положениям тогдашней науки. Примерами тому могут служить процессы, протекающие в экономике, или попытки управления самоорганизующимися процессами, в силу своей природы не требующими вмешательства извне — к таковым относится, скажем, разделение двух основных функций университетов, возникновение естественного процентного соотношения между исследовательским и учебным процессами.

Источник

Теория хаоса (синергетика)

Некоторые аналогии с пифагорейской системой можно найти в современной теории хаоса. Теория хаоса занимается непредсказуемым поведением систем, подчиненных закону причинности. При определенных условиях динамические системы могут перейти в «хаотическое» состояние, в котором их поведение принципиально (не по причине неосведомленности исследователя) непредсказуемо. Примерами могут служить климат, рост популяций животных и поведение потоков жидкостей. Малейшее изменение исходного состояния ведет в хаотических системах к совершенно иному варианту развития. Это сказывается, например, на прогнозах погоды – ведь в силу всеобщей причинной взаимосвязи теоретически даже один взмах крыльев бабочки в бразильском лесу может стать причиной смерча где-нибудь в северной Америке.

Пример Рене Тома: «Допустим, дано: агрессивность есть переменная состояния собаки; она возрастает в прямой зависимости от ее злобности и является контролируемой переменной. Предположим, что последняя поддается измерению, дойдя до пороговой величины, она трансформируется в атаку. Страх – вторая контролируемая переменная – производит обратный эффект и, дойдя до пороговой величины приводит к бегству собаки. Если нет ни злобности, ни страха, то поведение собаки нейтрально. Но если обе контролируемые переменные возрастают одновременно, оба порога будут приближаться одновременно, тогда поведение собаки становится непредсказуемым: она может внезапно перейти от атаки к бегству и наоборот. Система называется неустойчивой: контролируемые переменные непрерывно изменяются, переменные состояния изменяются прерывно».

В теории хаоса популярны такие понятия, как бифуркация, флуктуация, диссипация, аттракторы, нелинейность. Они наделяются категориальным статусом и используются для объяснения поведения всех типов систем: доорганизмических, организмических, социальных и пр. В условиях, далеких от равновесия, действуют бифуркационные механизмы. Они предполагают наличие точек раздвоения и неединственность продолжения развития. Результаты их действия трудно предсказуемы. По мнению Ильи Пригожина, бифуркационные процессы свидетельствуют об усложнении системы. Никита Моисеев утверждает, что, в принципе, каждое состояние социальной системы является бифуркационным. А в глобальных измерениях антропогенеза развитие человечества уже пережило по крайней мере две бифуркации. Первая произошла в палеолите и привела к утверждению системы табу, ограничивающей действие биосоциальных законов «не убий!» Вторая — в неолите и связана с расширением геологической ниши — освоением земледелия и скотоводства

Флуктуации в общем случае означают возмущения и подразделяются на два больших класса: класс флуктуаций, создаваемых внешней средой, и класс флуктуаций, воспроизводимых самой системой. Возможны случаи, когда флуктуации будут столь сильны, что овладеют системой полностью, придав ей свои колебания, и, по сути, изменят режим ее существования. Они выведут систему из свойственного ей «типа порядка». Но выведут ли они ее обязательно к хаосу или к упорядоченности иного уровня – не известно.

Система, по которой рассеиваются возмущения, называется диссипативной. По сути дела, это характеристика поведения системы при флуктуациях, которые охватили ее полностью. Основное свойство диссипативной системы — необычайная чувствительность к всевозможным воздействиям и в связи с этим чрезвычайная неравновесность.

Аттракторы — притягивающие множества, образующие собой как бы центры, к которым тяготеют элементы. К примеру, когда скапливается большая толпа народа, отдельный человек, двигающийся в собственном направлении, не в состоянии пройти мимо, не отреагировав на нее. Изгиб его траекторий осуществится в сторону образовавшейся массы. В обыденной жизни это часто называют любопытством. В теории хаоса подобный процесс получил название «сползание в точку скопления». Аттракторы стягивают и концентрируют вокруг себя стохастические элементы, тем самым структурируя среду и выступая участниками созидания порядка.

В современной картине мира упорядоченность, структурность, равно как и хаосомность, стохастичность (неопределенность), признаны объективными, универсальными характеристиками действительности. Они обнаруживают себя на всех структурных уровнях развития. Попытки создания теории направленного беспорядка опираются на обширные классификации и типологии хаоса. Самый простой вид хаоса – «маломерный» встречается в науке и технике и поддается описанию с помощью детерминированных систем. Он отличается сложным временным, но весьма простым пространственным поведением. «Многомерный» хаос сопровождает нерегулярное поведение нелинейных сред. В турбулентном режиме сложными, не поддающимися координации будут и временные, и пространственные параметры.

Значение синергетики для философии познания:

— прослеживается четкая взаимосвязь между простым и сложным, частным и общим: эволюция систем может развиваться не только в сторону усложнения, но и деградации, переходя к хаотическим режимам поведения;

— процесс самоорганизации системы сопровождается переходом от случайности к необходимости; превращение случайных изменений в детерминированное движение системы происходит в точках бифуркации;

— новое понимание категории причинности; взаимодействие причины и действия имеет циклический характер: не только причина, но и действие оказывает влияние на породившую ее причину («принцип дополнительности»);

— если в классическом естествознании хаос играл чисто негативную роль, являясь символом дезорганизации и разрушения порядка, то в синергетике он выступает в качестве конструктивного фактора; с одной стороны, из хаоса или беспорядка возникает порядок, а с другой – сам хаос представляет собой весьма сложную форму упорядоченности;

— изменяется взгляд на категорию времени; классическая термодинамика оперирует понятием необратимости времени; «стрела времени» направлена в сторону увеличения энтропии системы, возрастания в ней беспорядка; синергетика дает представление о временной симметрии, обратимости времени.

Итак, мы видим, что бытие может быть представлено как мир идей (эйдосов), мир, в основе которого лежат сверхъестественные сущности. Идея – это философский термин, с помощью которого обозначают сущность предметов, явлений и процессов окружающего мира.Дословный перевод термина – «то, что видно», однако видно незримо в буквальном физическом смысле, видно умом, а не телом. Идеи есть объекты ума.

Наиболее полное развитие данный термин получил в учении древнегреческого философа Платона и был уточнен и дополнен Аристотелем.

Источник

СИНЕРГЕТИЧЕСКАЯ КОНЦЕПЦИЯ. ПОРЯДОК ИЗ ХАОСА

Наука всегда оказывается не права. Она никогда не решит вопроса, не поставив при этом десятка новых.

Природному Вселенная тесна,

Искусственному ж замкнутость нужна!

Рассмотрим несколько примеров.

Итак, самоорганизация и хаос (порядок и беспорядок) являются важнейшими характеристиками материи. Синергетический подход позволяет моделировать поведение любых сложных систем, встречающихся в природе. К числу таких систем могут быть отнесены живые организмы, экологические системы, нейронные сети, сложные экономические и социальные системы, даже стратегии обучения. Синергетический подход позволяет моделировать развитие науки, коммуникационных сетей, человечества вообще, возможные разрешения глобальных проблем современной цивилизации, демографических и экономических кризисов и многое другое. Таким образом, он может лечь в основу проектирования дальнейшего развития человечества.

Синергетика обладает наиболее широкой общностью предмета, для нее необходим целостный системный анализ. Кроме того, синергетика ориентирована на естественные ритмы природы и на непрерывный диалог исследуемых систем с окружающей их средой. Это обеспечивает междисциплинарный синтез знания, возможно – является началом новой философии, основанной на универсальном методе исследования любых природных и социальных систем.

ЗАКЛЮЧЕНИЕ

Новые открытия в естествознании (большие и маленькие) сейчас совершаются почти каждый день, но серьезные концептуальные идеи изменяются редко. Мы познакомили читателя с некоторыми из них и надеемся, что специалисты «гуманитарных» профессий никогда не будут образованными «однобоко», ведь книга Природы настолько интересна, а ее познание бесконечно.

Источник

Синергетика. Порядок из хаоса

Рассмотрение сущности понятия «синергетика». Познанием сложного в мире, поиском неких универсальных образцов самоорганизации сложных систем. Изучение основных причин хаоса. Синергетические закономерности порядка в мире. Роль энтропии как меры хаоса.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 16.03.2014
Размер файла 210,4 K

ba

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Московский городской педагогический университет

Синергетика. Порядок из хаоса

Работу выполнила студентка

4го курса Менеджмента Организации

5. Роль энтропии как меры хаоса

6. Порядок из хаоса

7. Синергетические закономерности

Введение

Человек находится в состоянии смятения перед сложным. Он испытывает страх перед хаосом. Как ориентироваться в сложном мире? Как овладеть сложным? Как прогнозировать развитие сложного? Какая природа у хаотического и сложного?

Познанием сложного, поиском неких универсальных образцов самоорганизации сложных систем занимается синергетика. Естественно возникает вопрос, может ли синергетика помочь нам понять закономерности эволюции научного знания, причем не только на уровне коллективов ученых, научного сообщества, но и на уровне индивидуального творчества заинтересованных лиц.

1. Что такое «синергетика»

В центре внимания синергетики находится согласование взаимодействующих между собой отдельных частей при образовании структуры единого целого.

Когда же появилась на свет синергетика?

В отличие от подавляющего большинства наук, чьи дни рождения окутаны покровом неизвестности, дата рождения синергетики известна: в 1973 году на первой конференции, посвященной проблемам самоорганизации, Герман Хакен сделал доклад, с которого фактически и отсчитывает свое время жизни синергетика.

Замысел профессора Хакена заключался в том, чтобы синергетика играла роль метанауки, которая подмечает и изучает общие закономерности различных систем, которые частные науки считали своими. Поэтому, в отличие от пограничных наук, которые действуют в довольно узкой полосе двух смежных наук, синергетика извлекает системы, которые представляют для нее интерес из самой глубины предметной области частных наук, с тем, чтобы проводить исследование, не апеллируя к природе данной системы, а используя свои специфические средства и «интернациональный» междисциплинарный язык. Язык, который, при соответствующей подготовке, может быть понятен представителям разных, в том числе и гуманитарных наук.

2. Объекты синергетики


синергетика хаос энтропия самоорганизация

Главный мировоззренческий сдвиг, произведенный синергетикой, можно выразить следующим образом:

процессы разрушения и созидания, деградации и упорядоченности во Вселенной, по меньшей мере, равноправны;

процессы созидания (нарастания сложности и упорядоченности) имеют единый алгоритм независимо от природы систем, в которых они осуществляются.

Таким образом, синергетика претендует на открытие некоего универсального механизма, с помощью которого осуществляется самоорганизация, как в живой, так и неживой природе. Отсюда следует, что объектом синергетики могут быть отнюдь не любые системы, а только, которые удовлетворяют, по меньшей мере, двум условиям:

· они должны быть открытыми, т.е. обмениваться веществом или энергией с внешней средой;

· они должны быть существенно неравновесными, т.е. находиться в состоянии, далеком от термодинамического равновесия.

Итак, синергетика утверждает, что развитие открытых и сильно неравновесных систем протекает путем нарастающей сложности и упорядоченности. В цикле развития такой системы наблюдаются две фазы:

Период плавного эволюционного развития с хорошо предсказуемыми линейными изменениями, подводящими в итоге систему к некоторому неустойчивому критическому состоянию.

Выход из критического состояния одномоментно, скачком и переход в новое устойчивое состояние с большей степенью сложности и упорядоченности.

3. Самоорганизация

Самоорганизация проявляется на уровне живой клетки, тканей, образованных из клеток, на уровне органов, систем органов, выполняющих определенные функции организма, и, наконец, всего организма в целом. Не только одного организма, но и всей популяции в целом.

В качестве примера можно привести регулирование численности популяции у животных. При чрезмерном увеличении популяции наблюдается ослабление особей из-за нехватки пищи, появления болезней, хищников и других факторов, которые регулируют численность, доводя ее до оптимального размера. То же можно сказать и в отношении к человечеству. В последние десятилетия получили распространение гомосексуализм и наркомания, которые ведут к вырождению человечества. И тут же появляется СПИД, жертвами которого становятся в первую очередь эти люди.

Рассмотренные выше примеры показывают, что хотя такие регулирующие факторы, как, например, вирусы новых болезней и др., проявляются материально, сами они являются проявлениями Высших законов, которые нельзя вывести из законов существования материи.

Наука призвана не просто собирать фактический материал, но и стремиться создать целостную картину мира, целостное мировоззрение. Химик Дмитрий Иванович Менделеев (1834-1907) впервые упорядочил многообразие существующих в природе веществ, создав периодическую систему химических элементов. В современной атомной физике периодическая система Менделеева может считаться воплощением основного закона строения атомов. В биологии, в соответствии с открытыми им законами, происходит передача от поколения к поколению наследственных признаков при скрещивании, к примеру, растений с различной окраской цветков или при выведении новой породы собак. Уже в наше время были обнаружены химические механизмы такой передачи, происходящей благодаря гигантским молекулам дезоксирибонуклеиновой кислоты (ДНК).

Под самоорганизацией в синергетике понимаются процессы возникновения макроскопических упорядоченных пространственно временных структур в сложных нелинейных системах. Система под воздействием самых незначительных воздействии, или флуктуации, может резко изменить свое состояние. Этот переход часто характеризуют как возникновение порядка из хаоса.

Интересно, что как в установлении, так и в разрушении порядка огромную роль играют маленькие воздействия (флуктуации). Благодаря этим воздействиям система в одних случаях приобретает упорядоченность, в других эта упорядоченность, исчерпав себя, разрушается, при этом система попадает в состояние неустойчивости. Смена режимов устойчивости и неустойчивости происходит в системах, где есть подвод вещества, энергии и информации.

До развития синергетики наука рассматривала отдельно хаос и порядок, причем основное внимание уделялось именно порядку, ибо его можно описать относительно простыми математическими уравнениями. Синергетика выявляет пути зарождения в хаосе порядка, его поддержания и распада.

Представьте себе нагрев воды в кастрюле. За счет подвода энергии вода начинает нагреваться, появляются пузырьки воздуха в воде. А возникают они на случайных местах, в силу случайностей. Но если пузырек образовался, то в уже достаточно нагретой воде он увеличивается в размерах и поднимается к поверхности воды, где лопается. При нагревании воды хаотичность движения ее молекул возрастает, но именно в этом хаосе устанавливается порядок, развивается история капель, наполненных водяными парами.

Исходя из успехов синергетики, ученые объясняют возникновение и развитие упорядоченных систем перестройкой хаоса. Все возникает из хаоса. Поскольку система «забывает» свои прошлые состояния. Неизвестно, что было до хаоса и, в принципе, это невозможно узнать.

Методологическое преимущество синергетики, по сравнению с упомянутыми нами ранее теориями, заключается в том, что последние анализируют процессы упорядочения и организации под специфическим исследовательским углом зрения (доминирующим гештальтом). Так, например:

Иными словами, синергетику можно считать наиболее полной теорией порядка и хаоса потому, что она исследует различные фазы (уровни) порядка и проявления различной роли хаоса на этих этапах порядкообразования.

О соотношении синергетики и самоорганизации вполне определено, что содержание, на которое они распространяются, и заложенные в них идеи неотрывны друг от друга. Они же имеют и различия. Поэтому синергетику как концепцию самоорганизации следует рассматривать в смысле взаимного сужения этих понятий на области их пересечения. Эффект самоорганизации является существенным, но, тем не менее, одним из компонентов, характеризующих синергетику, и именно этот компонент придает выделенный смысл всему понятию синергетики и, как правило, является наиболее существенным и представляющим наибольший интерес.

Синергетика открыла процессы самоорганизации в природе, но посчитала их природу случайной, не заметив, что самоорганизация охватывает все уровни Вселенной и является ее законом.

4. Причины хаоса

Идеи Брюссельской школы, существенно опирающиеся на работы Пригожина, образуют новую, всеобъемлющую теорию изменений.

В сильно упрощенном виде суть этой теории сводится к следующему.

Кроме того, открытый характер подавляющего большинства систем во Вселенной наводит на мысль о том, что реальность отнюдь не является ареной, на которой господствует порядок, стабильность и равновесие: главенствующую роль в окружающем нас мире играют неустойчивость и неравновесность.

Если воспользоваться терминологией Пригожина, то можно сказать, что все системы содержат подсистемы, которые непрестанно флуктуируют. Иногда отдельная флуктуация или комбинация флуктуацией может стать (в результате положительной обратной связи) настолько сильной, что существовавшая прежде организация не выдержит и разрушится. В этот переломный момент (который авторы книги называют особой точкой или точкой бифуркаци) принципиально невозможно предсказать, в каком направлении будет происходить дальнейшее развитие: станет ли состояние системы хаотическим или она перейдет на новый, более дифференцированный и более высокий уровень упорядоченности или организации, который авторы называют диссипативной структурой.

(Физические или химические структуры такого рода получили название диссипативных потому, что для их поддержания требуется больше энергии, чем для поддержания более простых структур, на смену которым они приходят). Один из ключевых моментов в острых дискуссиях, развернувшихся вокруг понятия диссипативной структуры, связан с тем, что Пригожин подчеркивает возможность спонтанного возникновения порядка и организации из беспорядка и хаоса в результате процесса самоорганизации.

Обобщая, мы можем утверждать, что в состояниях, далеких от равновесия, очень слабые возмущения, или флуктуации, могут усиливаться до гигантских волн, разрушающих сложившуюся структуру, а это проливает свет на всевозможные процессы качественного или резкого (не постепенного) изменения. Факты, обнаруженные и понятые в результате изучения сильно неравновесных состояний и нелинейных процессов, в сочетании с достаточно сложными системами, наделенными обратными связями, привели к созданию совершенно нового подхода, позволяющего установить связь фундаментальных наук с «переферийными» науками о жизни и, возможно, даже понять некоторые социальные процессы.

5. Роль энтропии как меры хаоса

Знаменитое второе начало (закон) термодинамики в формулировке немецкого физика Р. Клаузиса звучит так: «Теплота не переходит самопроизвольно от холодного тела к более горячему».

Закон сохранения и превращения энергии, в принципе, не запрещает такого перехода, лишь бы количество энергии сохранялось в прежнем объеме. Но в реальности это никогда не происходит. Данную односторонность, однонаправленность перераспределения энергии в замкнутых системах подчеркивает второе начало термодинамики.

Физический смысл возрастания энтропии сводится к тому, что состоящая из некоторого множества частиц изолированная (с постоянной энергией) система стремится перейти в состояние с наименьшей упорядоченностью движения частиц. Это и есть наиболее простое состояние системы, или термодинамическое равновесие, при котором движение частиц хаотично. Максимальная энтропия означает полное термодинамическое равновесие, что эквивалентно хаосу.

6. Порядок из хаоса

В физической картине мира до 70-х годов XX века царствовали два закона классической термодинамики. Первый закон термодинамики (закон сохранения и превращения энергии) фиксировал всеобщее постоянство и превращаемость энергии. Закон констатировал, что в замкнутой системе тел нельзя ни увеличить, ни уменьшить общее количество энергии. Этот закон утверждал независимость такого изменения энергии от уровня организации животного, человека, общества и техники.

Второй закон термодинамики выражает направленность перехода энергии, именно переход теплоты от более нагретых тел к менее нагретым. Иногда этот закон формулируют так: тепло не может перетечь самопроизвольно от холодного тела к горячему. Этому могут способствовать только затраты дополнительной работы.

Ответить на вопрос, как происходит эволюция и возникновение в природе, как происходит организация порядка из хаоса, «решила» новая наука синергетика (совместно с новой неравновесной термодинамикой, теорией открытых систем).

Классическая термодинамика в своем анализе систем отвлекалась от их сложности и проблем взаимосвязи с внешней средой. По существу, она рассматривала изолированные, закрытые системы. Но в мире есть и открытые системы, которые обмениваются веществом, энергией информацией со средой. В открытых системах тоже возникает энтропия, происходят необратимые процессы, но за счет получения материальных ресурсов, энергии и информации система сохраняется, а энтропию выводит в окружающую среду. Открытые системы характеризуются неравновесной структурой. Неравновесность связана с адаптацией к внешней среде (система вынуждена изменять свою структуру), система может претерпевать много различных состояний неопределенность и т. д. Переход от термодинамики равновесных процессов, к анализу открытых систем ознаменовал крупный поворот в науке, многих отраслях научных знаний. В открытых системах обнаружен эффект самоорганизации, эффект движения от хаоса к порядку.

Немецкий физик Герман Хакен термином «синергетика» предложил обозначить совокупный, коллективный эффект взаимодействия большого числа подсистем, приводящих к образованию устойчивых структур и самоорганизации в сложных системах.

Конечно, феномен перехода от хаоса к порядку, упорядочения ученые знали и до этого. В качестве примеров организации порядка из хаоса в неживой природе можно привести авторегуляцию, принцип наименьшего действия и принцип Ле-Шателье. Было открыто самопроизвольное образование на Земле минералов с более сложной кристаллической решеткой. В химии известны процессы, приводящие к образованию устойчивых структур во времени. Примером является реакция Белоусова-Жаботинского, где раствор периодически меняет свой цвет от красного к синему в зависимости от концентрации соответствующих ионов.

Биологические и социальные системы поддерживают упорядоченные состояния, несмотря на возмущающие влияния окружающей среды.

Синергетика исследует особые состояния систем в области их неустойчивого состояния, способность к самоорганизации, точки бифуркации (переходные моменты, переломные точки).

7. Синергетические закономерности

Как же синергетика объясняет процесс движения от хаоса к порядку, процесс самоорганизации, возникновения нового?

2. Фундаментальным условием самоорганизации служит возникновение и усиление порядка через флуктуации.

3. В особой точке бифуркации флуктуация достигает такой силы, что организации системы не выдерживает и разрушается, и принципиально невозможно предсказать: станет ли состояние системы хаотичным или она перейдет на новый, более дифференцированный и высокий уровень упорядоченности. В точке бифуркации система может начать развитие в новом направлении, изменить свое поведение. Под точкой бифуркации понимается состояние рассматриваемой системы, после которого возможно некоторое множество вариантов ее дальнейшего развития. Примером бифуркаций могут служить «выбор спутника жизни», » ситуации выбора учебного заведения». Наглядный образ бифуркации дает картина В. М. Васнецова «Рыцарь на распутье».

4. Новые структуры, возникающие в результате эффекта взаимодействия многих систем, называются диссипативными, потому что для их поддержания требуется больше энергии, чем для поддержания более простых, на смену которым они приходят. В точке бифуркации система встает на новый путь развития. Те траектории или направления, по которым возможно развитие системы после точки бифуркации и которое отличается от других относительной устойчивостью, иными словами, является более реальным, называется аттрактором. Аттрактор- это относительно устойчивое состояние системы, притягивающее к себе множество «линий» развития, возможных после точки бифуркации. Случайность и необходимость взаимно дополняют друга в процессе возникновения нового.

5. Диссипативные структуры существуют лишь постольку, поскольку система рассеивает энергию, а, следовательно производит энтропию. Из энтропии возникает порядок с увеличением общей энтропии. Таким образом, энтропия не просто соскальзыванием системы к дезорганизации, она становится прародительницей порядка, нового. Так из хаоса (неустойчивости) в соответствии с определенной информационной матрицей рождается Космос.

Синергетическая интерпретация порядка как процесса позволяет примирить обозначенные нами противоречия в понимании порядка и хаоса, сложившиеся в науке к середине нашего столетия. Становится ясно, что перед нами не столько различные образы (модели) порядка, сколько взаимодополняющие характеристики различных фаз единого процесса порядкообразования.

Синтезирующая роль синергетической модели порядка как процесса проявилась также и в том, что в её контексте поновому прочитываются древние космогонические представления о порядке и хаосе, поскольку очевидны атрибутивные корреляции между ними и современными естественнонаучными характеристиками взаимоотношений хаоса и порядка.

Возникновение порядка античная мифологическая традиция связывала с понятием меры Синергетика также утверждает, что порядок (сложная структура) возникает при критических значениях в зоне баланса (соразмерности) энтропийных и негэнтропийных тенденций и сам этот порядок есть своего рода компромисс (мера) между устойчивостью и неустойчивостью

Космогоническое мировидение различает процессы, сопровождающие рождение порядка, и процессы, сопровождающие сохранение порядка. Первые связаны с напряжением, деструкцией, конфликтом, «враждой и распрей», которые сопровождают сам момент рождения Космоса из Хаоса; в однородном бесформенном Хаосе возникает неоднородность и дифференциация рождающихся первоэлементов (первостихий) мироздания. Вторые связаны с воссозданием гармонии, синхронизации процессов, космической «симпатии и любви», «содружеством Космоса самим с собой», что соответствует в синергетике состоянию системы, близкой к равновесию, слабо чувствительной к флуктуациям. Циклическое чередование этих тенденций в едином процессе космогенеза отражено в космогонических воззрениях Гераклита (идеи о диакосмезе и экпирозе) и Эмпедокла (круговорот Любви и Вражды в божественном Сфэросе), а также в древнекитайском учении о Дао как взаимочередовании космообразующих принципов Ян и Инь.

Синергетическая модель порядкообразования, как интегративная и универсальная в современном мироописании, позволяет придать новую трактовку многим социальным процессам и феноменам, в частности, разрешить многовековую дилемму о характере социального порядка.

Те социальные процессы, которые в обыденном сознании отождествляются с беспорядком, деструкцией (усиление социальной неоднородности, экономической и политической дифференциации, борьба противоположных общественных сил, стремительная социальная динамика и т.п.), есть не исчезновение порядка, но, напротив, показатель тенденции зарождения нового порядка. Те же социальные процессы, которые обычно связывают с проявлениями социального порядка (рост социальной однородности, устойчивая социальная иерархия, централизм и авторитаризм, отсутствие кардинальных перемен и т.п.), есть не столько «вечный образ порядка», сколько временный этап сохранения порядка в социальной системе, который неизбежно уступит место следующему этапу исторического процесса социального порядкообразования.

Список используемой литературы

1. Безручко Б.П. Путь в синергетику. Экскурс в десяти лекциях.

2. Князева Е.Н., Кудрюмов С.П. Основания синергетики. Человек, конструирующий себя и свое будущее.

3. Михайловский В.Н. Концепции Современного Естествознания.

4. Самыгина С.И. Концепции Современного Естествознания.

6. Пригожин И., Стенгерс И. Порядок из хаоса.

Сэр Карл Раймунд Помппер

Поппер наиболее известен своими трудами по философии науки, а также социальной и политической философии, в которых он критиковал классическое понятие научного метода, а также энергично отстаивал принципы демократии и социального критицизма, которых он предлагал придерживаться, чтобы сделать возможным процветание открытого общества.

К. Поппер является основоположником философской концепции критического рационализма. Он описывал свою позицию следующим образом: «Я могу ошибаться, а вы можете быть правы; сделаем усилие, и мы, возможно, приблизимся к истине».

В своем докладе о «Теории познания без познающего субъекта» Поппер выделяет три основных области (мира) вселенной:

1. Мир физических состояний;

2. Мир состояний сознания или мир побудительных мотивов;

3. Мир объективных идейных содержаний

Размещено на Allbest.ru

Подобные документы

Самоорганизующиеся системы как предмет изучения синергетики. Подходы к изучению синергетики, ее диалогичность. Модели самоорганизации в науках о человеке и обществе. Сверхбыстрое развитие процессов в сложных системах. Коэволюция, роль хаоса в эволюции.

курсовая работа [47,0 K], добавлен 30.01.2010

Характеристика сущности теории хаоса и особенностей ее взаимосвязи с естествознанием. Анализ вклада Вернадского в представления о «жизненном порыве» и «творческой эволюции». Применимость теории хаоса в общественных процессах. Человек и явление порядка.

контрольная работа [25,7 K], добавлен 28.09.2010

Синергетика – наука о процессах развития и самоорганизации сложных систем произвольной природы. Характеристика структурных принципов бытия и становления (гомеостатичности, иерархичности, незамкнутости, неустойчивости, эмерджентности, наблюдаемости).

реферат [18,8 K], добавлен 14.03.2011

Характеристики самоорганизующихся систем. Открытость. Нелинейность. Диссипативность. Системная модель мира. Самоорганизация и эволюция сложных систем, далеких от равновесия. Основы теории самоорганизации систем. Синергетическая картина мира.

реферат [53,9 K], добавлен 18.11.2007

Синергетика как теория самоорганизующихся систем в современном научном мире. История и логика возникновения синергетического подхода в естествознании. Влияние этого подхода на развитие науки. Методологическая значимость синергетики в современной науке.

реферат [30,9 K], добавлен 27.12.2016

Понятие энтропии как меры хаоса, ее принципы и место в истории развития классической физики. Общая характеристика образования структур нарастающей сложности. Анализ взаимосвязи экологии и естествознания. Оценка экологической обстановки в г. Новосибирске.

реферат [40,8 K], добавлен 21.10.2010

Синергетика как новое направление междисциплинарных исследований и новое миропонимание. Основные этапы развития синергетики: термины, понятия и категориальный аппарат, уровни самоорганизации материи, концепция развития. Диалектика эволюции живой природы.

курсовая работа [42,6 K], добавлен 09.06.2010

Источник

Adblock
detector